Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Pharm Pharmacol ; 75(7): 898-909, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: covidwho-20245412

RESUMO

OBJECTIVES: Saikosaponins (SSs) constitute a class of medicinal monomers characterised by a triterpene tricyclic structure. Despite their potential therapeutic effects for various pathological conditions, the underlying mechanisms of their actions have not been systematically analysed. Here, we mainly review the important anti-inflammatory, anticancer, and antiviral mechanisms underlying SS actions. METHODS: Information from multiple scientific databases, such as PubMed, the Web of Science, and Google Scholar, was collected between 2018 and 2023. The search term used was saikosaponin. KEY FINDINGS: Numerous studies have shown that Saikosaponin A exerts anti-inflammatory effects by modulating cytokine and reactive oxygen species (ROS) production and lipid metabolism. Moreover, saikosaponin D exerts antitumor effects by inhibiting cell proliferation and inducing apoptosis and autophagy, and the antiviral mechanisms of SSs, especially against SARS-CoV-2, have been partially revealed. Interestingly, an increasing body of experimental evidence suggests that SSs show the potential for use as anti-addiction, anxiolytic, and antidepressant treatments, and therefore, the related molecular mechanisms warrant further study. CONCLUSIONS: An increasing amount of data have indicated diverse SS pharmacological properties, indicating crucial clues for future studies and the production of novel saikosaponin-based anti-inflammatory, efficacious anticancer, and anti-novel-coronavirus agents with improved efficacy and reduced toxicity.


Assuntos
COVID-19 , Ácido Oleanólico , Saponinas , Humanos , SARS-CoV-2 , Saponinas/farmacologia , Saponinas/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia
2.
Antiviral Res ; 208: 105428, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-2129937

RESUMO

The continuous emergence of SARS-CoV-2 variants prolongs COVID-19 pandemic. Although SARS-CoV-2 vaccines and therapeutics are currently available, there is still a need for development of safe and effective drugs against SARS-CoV-2 and also for preparedness for the next pandemic. Here, we discover that astersaponin I (AI), a triterpenoid saponin in Aster koraiensis inhibits SARS-CoV-2 entry pathways at the plasma membrane and within the endosomal compartments mainly by increasing cholesterol content in the plasma membrane and interfering with the fusion of SARS-CoV-2 envelope with the host cell membrane. Moreover, we find that this functional property of AI as a fusion blocker enables it to inhibit the infection with SARS-CoV-2 variants including the Alpha, Beta, Delta, and Omicron with a similar efficacy, and the formation of syncytium, a multinucleated cells driven by SARS-CoV-2 spike protein-mediated cell-to-cell fusion. Finally, we claim that the triterpene backbone as well as the attached hydrophilic sugar moieties of AI are structurally important for its inhibitory activity against the membrane fusion event. Overall, this study demonstrates that AI is a natural viral fusion inhibitor and proposes that it can be a broad-spectrum antiviral agent against current COVID-19 pandemic and future outbreaks of novel viral pathogens.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Saponinas , Humanos , Vacinas contra COVID-19 , Células Gigantes , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Asteraceae/química , Saponinas/farmacologia
3.
Vet Microbiol ; 272: 109516, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1991332

RESUMO

Porcine epidemic diarrhea virus (PEDV) is one of the main pathogens causing severe diarrhea in piglets. Infection of the host induces apoptosis, causing huge economic losses to the pig industry. At present, the preventive and therapeutic effects of commercial vaccines are not satisfactory, and it is necessary to develop new anti-PEDV drugs. In this study, we screened the PEDV-inhibiting drug Buddlejasaponin IVb from the natural product library, and determined the inhibitory effect of Buddlejasaponin IVb on PEDV proliferation in a dose-dependent manner. By exploring the effect of Buddlejasaponin IVb on the life cycle of PEDV, it was found that Buddlejasaponin IVb mainly inhibits the replication and release stages of PEDV, but there is no report at home and abroad. In addition, Buddlejasaponin IVb can inhibit PEDV-activated NF-κB signaling pathway by downregulating PEDV or LPS induced elevation of cytokine levels (IL-6, IL-8, IL-1ß, TNF-α). Finally, we returned to in vivo experiments to explore the antiviral effects of the drug in pigs. The results show that Buddlejasaponin IVb can effectively relieve the clinical symptoms and intestinal damage caused by PEDV infection in pigs. Therefore, this study will provide an important basis for the research on antiviral drugs of PEDV and its members, and at the same time provide guidance for the actual production, which has important application prospects.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Saponinas , Doenças dos Suínos , Animais , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , NF-kappa B/metabolismo , Saponinas/farmacologia , Suínos , Doenças dos Suínos/tratamento farmacológico
4.
Bioorg Chem ; 127: 105985, 2022 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1906793

RESUMO

We previously discovered that triterpenoid saponin platycodin D inhibits the SARS-CoV-2 entry to the host cell. Herein, we synthesized various saponin derivatives and established a structure-activity relationship of saponin-based antiviral agents against SARS-CoV-2. We discovered that the C3-glucose, the C28-oligosaccharide moiety that consist of (→3)-ß-d-Xyl-(1 â†’ 4)-α-l-Rham-(1 â†’ 2)-ß-d-Ara-(1 â†’ ) as the last three sugar units, and the C16-hydroxyl group were critical components of saponin-based coronavirus cell entry inhibitors. These findings enabled us to develop minimal saponin-based antiviral agents that are equipotent to the originally discovered platycodin D. We found that our saponin-based antiviral agents inhibited both the endosomal and transmembrane protease serine 2-mediated cell surface viral entries. Cell fusion assay experiment revealed that our newly developed compounds inhibit the SARS-CoV-2 entry by blocking the fusion between the viral and host cell membranes. The effectiveness of the newly developed antiviral agents over various SARS-CoV-2 variants hints at the broad-spectrum antiviral efficacy of saponin-based therapeutics against future coronavirus variants.


Assuntos
COVID-19 , Saponinas , Antivirais/farmacologia , Humanos , Fusão de Membrana , SARS-CoV-2 , Saponinas/farmacologia , Relação Estrutura-Atividade
5.
6.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1583226

RESUMO

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Linfa/efeitos dos fármacos , Saponinas/farmacologia , Receptores Toll-Like/agonistas , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Linfa/fisiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas , Ratos , Ratos Wistar
7.
BMC Pulm Med ; 21(1): 371, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1526622

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a kind of chronic lung diseases with the characteristics of airway remodeling and airflow obstruction. Magnesium isoglycyrrhizinate (MgIG) is an anti-inflammatory glycyrrhizic acid preparation for treating hepatitis. However, whether MgIG can treat other diseases and its action mechanism is still obscure. In this study, we evaluated the anti-inflammatory effect of MgIG in rats with COPD and investigated the underlying mechanisms. METHODS: Rat model of COPD was constructed by endotracheal-atomized lipopolysaccharide exposure and cigarette smoke induction. Rats were randomly divided into 5 groups: control group, COPD model group, salmeterol fluticasone comparator group, low dose of MgIG group, and high dose of MgIG group. Except for normal control group, the other four groups received sensitization treatment by cigarette smoking and endotracheal-atomization of endotoxin lipopolysaccharide to construct COPD rats model. After model established successfully, the COPD rats in each group received corresponding dose of endotracheal-atomized normal saline, salmeterol fluticasone, and MgIG every day prior to exposure of cigarette smoke from days 30 to 45. Normal control group were treated with normal saline. Finally, All rats were euthanatized. Pulmonary function was measured. Cells in bronchoalveolar lavage fluid were classified, inflammatory factors IL-6 and TNF-α were determined, histopathological analysis was performed by HE staining, and expression of NLRP3 and cleaved caspase-1 in the lung tissue was also determined by Western blotting. RESULTS: It showed that MgIG treatment (0.40 or 0.80 mg/kg/day) could recover the weight and the clinical symptoms of rats with COPD, accompanied with lung inflammation infiltration reduction, airway wall attenuation, bronchial mucus secretion reduction. Additionally, MgIG administration reduced inflammatory cells (white blood cells, neutrophils, lymphocytes and monocytes) accumulation in bronchoalveolar lavage fluid and decreased IL-6 and TNF-α production in the serum of COPD rats. Furthermore, MgIG treatment also reduced the expression level of NLRP3 and cleaved caspase-1. CONCLUSION: It indicate that MgIG might be an alternative for COPD treatment, and its mechanism of action might be related to the suppression of NLRP3 inflammasome.


Assuntos
Anti-Inflamatórios/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , China , Inflamação/prevenção & controle , Pulmão/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença Pulmonar Obstrutiva Crônica/patologia , Ratos , Ratos Wistar , Fumar
8.
Int J Biol Macromol ; 183: 2248-2261, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1260750

RESUMO

The recent emergence of the novel coronavirus (SARS-CoV-2) has resulted in a devastating pandemic with global concern. However, to date, there are no regimens to prevent and treat SARS-CoV-2 virus. There is an urgent need to identify novel leads with anti-viral properties that impede viral pathogenesis in the host system. Esculentoside A (EsA), a saponin isolated from the root of Phytolacca esculenta, is known to exhibit diverse pharmacological properties, especially anti-inflammatory activity. To our knowledge, SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) to enter host cells. This is mediated through the proteins of SARS-CoV-2, especially the spike glycoprotein receptor binding domain. Thus, our primary goal is to prevent virus replication and binding to the host, which allows us to explore the efficiency of EsA on key surface drug target proteins using the computational biology paradigm approach. Here, the anti-coronavirus activity of EsA in vitro and its potential mode of inhibitory action on the S-protein of SARS-CoV-2 were investigated. We found that EsA inhibited the HCoV-OC43 coronavirus during the attachment and penetration stage. Molecular docking results showed that EsA had a strong binding affinity with the spike glycoprotein from SARS-CoV-2. The results of the molecular dynamics simulation revealed that EsA had higher stable binding with the spike protein. These results demonstrated that Esculentoside A can act as a spike protein blocker to inhibit SARS-CoV-2. Considering the poor bioavailability and low toxicity of EsA, it is suitable as novel lead for the inhibitor against binding interactions of SARS-CoV-2 of S-protein and ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/análogos & derivados , SARS-CoV-2 , Saponinas , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Coronavirus Humano OC43/química , Coronavirus Humano OC43/metabolismo , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Saponinas/química , Saponinas/farmacologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Exp Mol Med ; 53(5): 956-972, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1243283

RESUMO

An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Saponinas/farmacologia , Serina Endopeptidases/metabolismo , Triterpenos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/química , COVID-19/metabolismo , Linhagem Celular , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Modelos Moleculares , Platycodon/química , SARS-CoV-2/fisiologia , Saponinas/química , Triterpenos/química
10.
Food Chem Toxicol ; 150: 112075, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-1196708

RESUMO

Medicinal or herbal plants are widely used for their many favourable properties and are generally safe without any side effects. Saponins are sugar conjugated natural compounds which possess a multitude of biological activities such as medicinal properties, antimicrobial activity, antiviral activity, etc. Saponin production is a part of the normal growth and development process in a lot of plants and plant extracts such as liquorice and ginseng which are exploited as potential drug sources. Herbal compounds have shown a great potential against a wide variety of infectious agents, including viruses such as the SARS-CoV; these are all-natural products and do not show any adverse side effects. This article reviews the various aspects of saponin biosynthesis and extraction, the need for their integration into more mainstream medicinal therapies and how they could be potentially useful in treating viral diseases such as COVID-19, HIV, HSV, rotavirus etc. The literature presents a close review on the saponin efficacy in targeting mentioned viral diseases that occupy a high mortality rate worldwide. This manuscript indicates the role of saponins as a source of dynamic plant based anti-viral remedies and their various methods for extraction from different sources.


Assuntos
Antivirais/isolamento & purificação , Saponinas/isolamento & purificação , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Antivirais/farmacologia , HIV/efeitos dos fármacos , Estrutura Molecular , Orthomyxoviridae/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Saponinas/biossíntese , Saponinas/química , Saponinas/farmacologia
11.
Chem Biol Interact ; 341: 109449, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1157165

RESUMO

BACKGROUND: COVID-19, a severe global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged as one of the most threatening transmissible disease. As a great threat to global public health, the development of treatment options has become vital, and a rush to find a cure has mobilized researchers globally from all areas. SCOPE AND APPROACH: This review focuses on deciphering the potential of different secondary metabolites from medicinal plants as therapeutic options either as inhibitors of therapeutic targets of SARS-CoV-2 or as blockers of viral particles entry through host cell receptors. The use of medicinal plants containing specific phytomoieties could be seen in providing a safer and long-term solution for the population with lesser side effects. Key Findings and Conclusions: Considering the high cost and time-consuming drug discovery process, therapeutic repositioning of existing drugs was explored as treatment option in COVID-19, however several molecules have been retracted as therapeutics either due to no positive outcomes or the severe side effects. These effects call for exploring the alternate treatment options which are therapeutically effective as well as safe. Keeping this in mind, phytopharmaceuticals derived from medicinal plants could be explored as important resources in the development of COVID-19 treatment, as their role in the past for treatment of viral diseases like HIV, MERS-CoV, and influenza has been well reported. Considering this fact, different phytoconstituents such as flavonoids, alkaloids, tannins and glycosides etc. Possessing antiviral properties against coronaviruses and possessing potential against SARS-CoV-2 have been reviewed in the present work.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Antraquinonas/química , Antraquinonas/farmacologia , Antivirais/química , Flavonoides/química , Flavonoides/farmacologia , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/química , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Saponinas/química , Saponinas/farmacologia , Metabolismo Secundário
12.
Eur J Med Chem ; 215: 113242, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1086914

RESUMO

Currently, SARS-CoV-2 virus is an emerging pathogen that has posed a serious threat to public health worldwide. However, no agents have been approved to treat SARS-CoV-2 infections to date, underscoring the great need for effective and practical therapies for SARS-CoV-2 outbreaks. We reported that a focused screen of OA saponins identified 3-O-ß-chacotriosyl OA benzyl ester 2 as a novel small molecule inhibitor of SARS-CoV-2 virus entry, via binding to SARS-CoV-2 glycoprotein (S). We performed structure-activity relationship profiling of 2 and discovered C-17-COOH of OA was an important modification site that improved both inhibitor potency toward SARS-CoV-2 and selectivity index. Then optimization from hit to lead resulted in a potent fusion inhibitor 12f displaying strong inhibition against infectious SARS-CoV-2 with an IC50 value of 0.97 µM in vitro. Mechanism studies confirmed that inhibition of SARS-CoV-2 viral entry of 12f was mediated by the direct interaction with SARS-CoV-2 S2 subunit to block membrane fusion. These 3-O-ß-chacotriosyl OA amide saponins are suitable for further optimization as SARS-CoV-2 entry inhibitors with the potential to be developed as therapeutic agents for the treatment of SARS-CoV-2 virus infections.


Assuntos
Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/metabolismo , Chlorocebus aethiops , Descoberta de Drogas , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , Subunidades Proteicas/metabolismo , Saponinas/síntese química , Saponinas/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/metabolismo , Células Vero
13.
Mol Divers ; 25(3): 1889-1904, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-1046729

RESUMO

Saikosaponins are major biologically active triterpenoids, usually as glucosides, isolated from Traditional Chinese Medicines (TCM) such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia with their antiviral and immunomodulatory potential. This investigation presents molecular docking, molecular dynamics simulation, and free energy calculation studies of saikosaponins as adjuvant therapy in the treatment for COVID19. Molecular docking studies for 23 saikosaponins on the crystal structures of the extracellular domains of human lnterleukin-6 receptor (IL6), human Janus Kinase-3 (JAK3), and dehydrogenase domain of Cylindrospermum stagnale NADPH-oxidase 5 (NOX5) were performed, and selected protein-ligand complexes were subjected to 100 ns molecular dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Molecular docking and molecular dynamics simulation studies revealed that IL6 in complex with Saikosaponin_U and Saikosaponin_V, JAK3 in complex with Saikosaponin_B4 and Saikosaponin_I, and NOX5 in complex with Saikosaponin_BK1 and Saikosaponin_C have good docking and molecular dynamics profiles. However, the Janus Kinase-3 is the best interacting partner for the saikosaponin compounds. The network pharmacology analysis suggests saikosaponins interact with the proteins CAT Gene CAT (Catalase) and Checkpoint kinase 1 (CHEK1); both of these enzymes play a major role in cell homeostasis and DNA damage during infection, suggesting a possible improvement in immune response toward COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Humanos , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Domínios Proteicos , Saponinas/metabolismo , Saponinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA